The following formulae are used in finding the limits as integration:
If f is continuous on [0,1], then \lim_{n \to \infty} \frac{1}{n} \Sigma_{k=1}^n f( \frac{k}{n})=\int_0^1f(x)dx.
If f is continuous on [a,b], then \lim_{n \to \infty} \frac{b-a}{n} \Sigma_{k=1}^n f( a+\frac{k(b-a)}{n})=\int_a^bf(x)dx.
Problems:
1. Evaluate \lim _{n \rightarrow \infty}\left[\frac{1}{\sqrt{4 n^{2}-1}}+\frac{1}{\sqrt{4 n^{2}-4}}+\frac{1}{\sqrt{4 n^{2}-9}}+\ldots \cdot \frac{1}{\sqrt{3 n^{2}}}\right]
Ans: \left.\sin ^{-1} \frac{x}{2}\right|_{0} ^{1}=\frac{\pi}{6}.
2. [JEE] Find the limit \lim _{n \rightarrow \infty} \frac{1^{p}+2^{p}+3^{p}+\ldots+n^{p}}{n^{p+1}}.
Ans: \frac{1}{p+1}
If f is continuous on [0,1], then \lim_{n \to \infty} \frac{1}{n} \Sigma_{k=1}^n f( \frac{k}{n})=\int_0^1f(x)dx.
If f is continuous on [a,b], then \lim_{n \to \infty} \frac{b-a}{n} \Sigma_{k=1}^n f( a+\frac{k(b-a)}{n})=\int_a^bf(x)dx.
Problems:
1. Evaluate \lim _{n \rightarrow \infty}\left[\frac{1}{\sqrt{4 n^{2}-1}}+\frac{1}{\sqrt{4 n^{2}-4}}+\frac{1}{\sqrt{4 n^{2}-9}}+\ldots \cdot \frac{1}{\sqrt{3 n^{2}}}\right]
Ans: \left.\sin ^{-1} \frac{x}{2}\right|_{0} ^{1}=\frac{\pi}{6}.
2. [JEE] Find the limit \lim _{n \rightarrow \infty} \frac{1^{p}+2^{p}+3^{p}+\ldots+n^{p}}{n^{p+1}}.
Ans: \frac{1}{p+1}
Comments
Post a Comment