Skip to main content

Gershgorin circle theorem: A bound on eigenvalues

 

Let be a complex matrix, with entries . For let be the sum of the absolute values of the non-diagonal entries in the -th row:

Let be a closed disc centered at with radius . Such a disc is called a Gershgorin disc.

Theorem. Every eigenvalue of lies within at least one of the Gershgorin discs  

Corollary. The eigenvalues of A must also lie within the Gershgorin discs Cj corresponding to the columns of A.
 
Note: The theorem does not claim that there is one disc for each eigenvalue. 
 
________________________________________________
This theorem can be used to solve the following problem, asked in the PhD entrance exam of Pondicherry university in the year 2011.
 
All eigenvalues of the matrix $\begin{pmatrix} 1 & 2 & 0 \\ 2 & 1  & 0 \\ 0 & 0 & -1 \end{pmatrix}$ lie in the disc

a) $|\lambda +1| \le 1$

a) $|\lambda -1| \le 1$

a) $|\lambda +1| \le 0$

a) $|\lambda -1| \le 2$
 
 

Comments

Popular posts from this blog

Countable and Uncountable

Here we collect the various examples given in books and options asked in CSIR, GATE, TRB, JAM examinations about countable sets.  Find which of the following sets are countable?  1. The set of rational numbers $\mathbb{Q}$  2. The set of natural numbers $\mathbb{N}$ 3. The set of real numbers $\mathbb{R}$ 4. The set of prime numbers $\mathbb{P}$ 5. The set of complex numbers with unit modulus. 6. The set of algebraic numbers. 7. The set of transcendental numbers. 8. The set of all polynomials with integer coefficients. 9. The set of all polynomials with rational coefficients. 10. The set of all polynomials over $\mathbb{R}$ with rational roots. 11. The set of all monic polynomials over $\mathbb{R}$ with rational roots. 12. The product set $\mathbb{N} \times \mathbb{N}$ 13. The product set $\mathbb{N} \times \mathbb{R}$ 14. $\wp(\mathbb{N})$, The set of all subsets of $\mathbb{N}$  15. The set of all finite subsets of $\mathbb{N}$  16. The set of all functions from   $\mathbb{N}$ to $\

NBHM Problem...

Let T  be a nilpotent linear operator on the vector space $\mathbb{ R}^5$  (i.e., $ T^k=0$  for some k). Let $d_i$  denote the dimension of the kernel of $ T^i$ . Which of the following can possibly occur as a value of $ (d_1,d_2,d_3)$ ?  1. (1,2,3) 2. (2,3,5) , 3. (2,2,4) , 4. (2,4,5) For the excellent proof using Jordan Canonical form visit  https://nbhmcsirgate.theindianmathematician.com/2020/04/nbhm-2020-part-c-question-26-solution.html#.XqCM3QR0R10.whatsapp Here we present a proof (incomplete in preciousness) on the fact "A linear transformation is completely determined by its behaviour on a basis."