Processing math: 5%
Skip to main content

Gershgorin circle theorem: A bound on eigenvalues

 

Let be a complex matrix, with entries . For let be the sum of the absolute values of the non-diagonal entries in the -th row:

Let be a closed disc centered at with radius . Such a disc is called a Gershgorin disc.

Theorem. Every eigenvalue of lies within at least one of the Gershgorin discs  

Corollary. The eigenvalues of A must also lie within the Gershgorin discs Cj corresponding to the columns of A.
 
Note: The theorem does not claim that there is one disc for each eigenvalue. 
 
________________________________________________
This theorem can be used to solve the following problem, asked in the PhD entrance exam of Pondicherry university in the year 2011.
 
All eigenvalues of the matrix \begin{pmatrix} 1 & 2 & 0 \\ 2 & 1  & 0 \\ 0 & 0 & -1 \end{pmatrix} lie in the disc

a) |\lambda +1| \le 1

a) |\lambda -1| \le 1

a) |\lambda +1| \le 0

a) |\lambda -1| \le 2
 
 

Comments

Popular posts from this blog

Books(Authors) list for TRB Exams

Books for TRB syllabus Topic Authors Analysis 1. Rudin 2. Apostol Algebra 1. Herstein 2. Hoffman Kunze Complex Analysis Ahlfors Topology Munkres Functional Analysis Simmons Differential Equations 1. Sneddon 2. coddington 3. Sankara rao 4. Simmons 5. Grewal (Enggineering Mathematics) Differential Geometry 1. Willmore 2. Somasundaram Probability and Statistics 1. Hogg 2. Gupta Kapoor 3. Grewal (Enggineering Mathematics) Linear programming 1.Sharma, J.K 2. Taha 3. Grewal (Enggineering Mathematics) Numerical Analysis 1. Brian Bradie 2. Jain and Iyyenger 3. Grewal (Enggineering Mathematics) Graph Theory Bondy and Murty Mechanics related subjects 1. Goldstein 2. ...

Practice Problems-1 (PG Mathematics)

Those who are preparing for competitive examinations in mathematics may utilize... All the best...  1. Find the radius of convergence \Sigma \frac{(-1)^n}{n}(z-i)^n 2. Find the limit x log x as x tend to 0. 3. Find the number of generators in (Z_{60}, \oplus). 4. Let J be the square matrix with all entries 1. Then the rank of J is _____ 5. Let V be the space of all polynomials of degree n, with complex coefficients. Then the dim V over \mathbb{R} is _____ 6. Give an example of a Lebesgue integrable but not Riemann integrable function. 7. If Y=2X+3, find the correlation coefficient between X and Y. 8. Find the number of nonisomorphic abelian groups of order 60. 9. Let G be a group of order 15. Then G is A. nonabelian B. Simple C. Cyclic D. None of these 10. Give an example of a group in which every subgroup is normal 11. In a cyclic group of order 36, no. Of subgroups of order 6 is _____ 12. In $(Z_{12}, \op...